Hardness of almost embedding simplicial complexes in $$\mathbb {R}^d$$ R d

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hardness of almost embedding simplicial complexes in $\mathbb R^d$

A map f : K → R of a simplicial complex is an almost embedding if f(σ) ∩ f(τ) = ∅ whenever σ, τ are disjoint simplices of K. Theorem. Fix integers d, k ≥ 2 such that d = 3k 2 + 1. (a) Assume that P 6= NP . Then there exists a finite k-dimensional complex K that does not admit an almost embedding in R but for which there exists an equivariant map K̃ → Sd−1. (b) The algorithmic problem of recognit...

متن کامل

Hardness of embedding simplicial complexes in Rd

Let EMBEDk→d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k, does there exist a (piecewise linear) embedding of K into Rd? Known results easily imply polynomiality of EMBEDk→2 (k = 1, 2; the case k = 1, d = 2 is graph planarity) and of EMBEDk→2k for all k ≥ 3. We show that the celebrated result of Novikov on the algorithmic unsolvability of reco...

متن کامل

Hardness of embedding simplicial complexes in R

Let EMBEDk→d be the following algorithmic problem: Given a finite simplicial complex K of dimension at most k, does there exist a (piecewise linear) embedding ofK into R? Known results easily imply polynomiality of EMBEDk→2 (k = 1, 2; the case k = 1, d = 2 is graph planarity) and of EMBEDk→2k for all k ≥ 3 (even if k is not considered fixed). We show that the celebrated result of Novikov on the...

متن کامل

On the number of simplicial complexes in Rd

Using a simplex-crossing counting technique we prove: if the number of non-improperly intersecting simplices with vertices in a set S of n labeled points in ~d is O(nra/2]) , then there are 2 °('~rd/21) different geometric simplicial complexes with vertices in S. © 1997 Elsevier Science B.V.

متن کامل

Embedding graphs into two-dimensional simplicial complexes

We consider the problem of deciding whether an input graph G admits a topological embedding into a two-dimensional simplicial complex C . This problem includes, among others, the embeddability problem of a graph on a surface and the topological crossing number of a graph, but is more general. The problem is NP-complete when C is part of the input, and we give a polynomial-time algorithm if the ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Discrete & Computational Geometry

سال: 2018

ISSN: 0179-5376,1432-0444

DOI: 10.1007/s00454-018-0013-1